RepD-mediated recruitment of PcrA helicase at the Staphylococcus aureus pC221 plasmid replication origin, oriD

نویسندگان

  • C. Machón
  • G. P. Lynch
  • N. H. Thomson
  • D. J. Scott
  • C. D. Thomas
  • P. Soultanas
چکیده

Plasmid encoded replication initiation (Rep) proteins recruit host helicases to plasmid replication origins. Previously, we showed that RepD recruits directionally the PcrA helicase to the pC221 oriD, remains associated with it, and increases its processivity during plasmid unwinding. Here we show that RepD forms a complex extending upstream and downstream of the core oriD. Binding of RepD causes remodelling of a region upstream from the core oriD forming a 'landing pad' for the PcrA. PcrA is recruited by this extended RepD-DNA complex via an interaction with RepD at this upstream site. PcrA appears to have weak affinity for this region even in the absence of RepD. Upon binding of ADPNP (non-hydrolysable analogue of ATP), by PcrA, a conformational rearrangement of the RepD-PcrA-ATP initiation complex confines it strictly within the boundaries of the core oriD. We conclude that RepD-mediated recruitment of PcrA at oriD is a three step process. First, an extended RepD-oriD complex includes a region upstream from the core oriD; second, the PcrA is recruited to this upstream region and thirdly upon ATP-binding PcrA relocates within the core oriD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PcrA Helicase Tightly Couples ATP Hydrolysis to Unwinding Double-Stranded DNA, Modulated by the Initiator Protein for Plasmid Replication, RepD†

The plasmid replication initiator protein, RepD, greatly stimulates the ability of the DNA helicase, PcrA, to unwind plasmid lengths of DNA. Unwinding begins at oriD, the double-stranded origin of replication that RepD recognizes and covalently binds to initiate replication. Using a combination of plasmids containing oriD and oligonucleotide structures that mimic parts of oriD, the kinetics of ...

متن کامل

Plasmid replication initiator protein RepD increases the processivity of PcrA DNA helicase.

The replication initiator protein RepD encoded by the Staphylococcus chloramphenicol resistance plasmid pC221 stimulates the helicase activity of the Bacillus stearothermophilus PcrA DNA helicase in vitro. This stimulatory effect seems to be specific for PcrA and differs from the stimulatory effect of the Escherichia coli ribosomal protein L3. Whereas L3 stimulates the PcrA helicase activity by...

متن کامل

Kinetic Mechanism of Initiation by RepD as a Part of Asymmetric, Rolling Circle Plasmid Unwinding

Some bacterial plasmids carry antibiotic resistance genes and replicate by an asymmetric, rolling circle mechanism, in which replication of the two strands is not concurrent. Initiation of this replication occurs via an initiator protein that nicks one DNA strand at the double-stranded origin of replication. In this work, RepD protein from the staphylococcal plasmid pC221 carries this function ...

متن کامل

In vitro studies of the initiation of staphylococcal plasmid replication. Specificity of RepD for its origin (oriD) and characterization of the Rep-ori tyrosyl ester intermediate.

Several staphylococcal plasmids from different incompatibility (inc) groups which replicate by a rolling circle mechanism each specify a replication initiator protein (Rep) which is homologous with that of the inc3 tetracycline resistance plasmid pT181. The rep gene sequences of six pT181-like plasmids are known, each encoding proteins of molecular mass 38 kDa with 62% overall amino acid sequen...

متن کامل

Monomeric PcrA helicase processively unwinds plasmid lengths of DNA in the presence of the initiator protein RepD

The helicase PcrA unwinds DNA during asymmetric replication of plasmids, acting with an initiator protein, in our case RepD. Detailed kinetics of PcrA activity were measured using bulk solution and a single-molecule imaging technique to investigate the oligomeric state of the active helicase complex, its processivity and the mechanism of unwinding. By tethering either DNA or PcrA to a microscop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2010